
Towards A Standard For Model Specification And Storage

D. Deva, J. Sprinkle, G. Nordstrom, and M. Maroti
Vanderbilt University
Nashville, TN, 37203

Abstract

Software production has become an industrial task usually
involving teams of programmers working on complex
problems to produce large, even huge software systems.
Globally distributed teams are doing a growing share of all
software development work. The management of software
engineering teamwork, especially of a temporally and/or
spatially distributed team, presents an enormous
organizational challenge as well as an intricate technical
problem, as such distributed teamwork requires tool support
for coordination of cooperative activities, maintenance of
project control, and sharing of information. Domain-
specific Model Integrated Program Synthesis environments
are created according to a modeling paradigm – a
description of the class of models that can be created using
the system. Just as model integrated computing applications
are executable instances of domain models, domain models
can be viewed as instances of metamodels. The
representation of these models and the modeling paradigm
is unique to the specific modeling environment. This poses
a major problem for portability of models from one
modeling environment to another. The purpose of this paper
is to explore the possibility of a common standard for the
storage of models, in what framework the standard should
exist, and who should define the standard.

1 Introduction

Modeling is the process of creating an abstract
representation of an engineering system. Models serve
several useful purposes, such as testing a system before
building it, communicating with customers, visualization,
and reduction in complexity etc. [4]. Domain-specific
modeling environments (DSME’s) differ in their modeling
languages and their model representation. There cannot
exist a single standard for all DSME’s within the entire
computer systems design community. The reason for this is
that DSME’s are designed to solve problems within a
certain domain and some modeling concepts are very
important for some applications but trivial or redundant in
other DSME’s. Large companies with physically dispersed
divisions create distributed teams to work together on
software projects. Cross-organizational projects also occur
with greater frequency, such as a subcontractor working

closely with a primary systems -integration contractor on a
large project. In such cases models developed by one team
using a DSME, should be compatible with the DSME used
by the other. Here, there arises a need for DSME’s to
exchange models with one another.

Although there exist several standard implementations for
specifying models (e.g. UML [11]) and at least one that
specifies interchange formats (CDIF [1]), none of these
implementations support data conformance or validation. It
is for this reason that we will explore the possibilities of a
different medium for specification and storage.

2 Background

Large Computer Based Systems (CBS’s) are among the
most significant technological developments of the past 20
years [12]. Within the domain of CBS’s the technology
with which to develop them has evolved. In the beginning
of CBS’s, the structure of the system and its components
was certainly not computerized, because of the enormous
expense of visualization, but was instead hand-drawn [4].
Today, with the development of inexpensive computer
hardware, large CBS’s are being developed using the
concept of Model Integrated Computing (MIC) [5][6][8].

2.1 Why Models Are Used To Solve Problems

Computers and computing systems are ubiquitous today.
Therefore, not only does it make sense to construct software
that reflects the tangible world that it describes, but also it is
necessary to construct that software in a way that allows the
software to evolve as the world evolves. MIC uses models
as the basis for system development. These models reflect
the components of the system, and the interactions between
them, but not the particular implementation in which those
components operate. MIC is used to create a solution for
the class of problems [13] (e.g. production flow
management), and that solution is then employed to
describe the particular problem (e.g. production flow
management for the Saturn plant [8]).

The MIC approach describes the environment in terms of
models . The direct benefit of a model based solution is
found in the notion of Model-Integrated Program Synthesis
(MIPS) [9][13]. MIPS allows the generation of programs
from the model-integrated solution. This means that to

update the software solution, one merely updates the model
of the environment, and recompiles the software. This
means fewer errors in software updates, and faster updates
of the software solutions.

2.2 GME Modeling Concepts

DSME’S are made up of basic concepts. In the Graphical
Modeling Environment (GME), developed at Vanderbilt
University, the following modeling concepts apply, on a
separate level from the final modeling solution. For a more
detailed description of the modeling concepts, please see
[7].

• Paradigm: a description of what modeling concepts are
allowed in a particular solution. More information on
the role of the paradigm is described in section 2.3.

• Category: a container for models. It is an organ-
izational tool (similar to a file system folder).

• Atom: the smallest entity of a solution. It cannot
contain any parts, but can connect to other atoms and
have attributes.

• Model: can contain atoms and other models. In
addition it can also contain connections, references,
attributes, and conditionals . It visualizes its contents
through aspects.

• Port: an atom that can connect to atoms in other
models.

• Aspect: a visualization tool that allows for specific
parts of a model to be viewable. The aspects of a
model are defined when the model is defined.

• Attribute: can belong to an atom, model, reference, or
connection. Usually a text field or menu that defines
the role of the part in the solution.

• Containment/hierarchy: the notion of parts “belonging”
to a model (can be many levels deep).

• Connections: an association between two (or more)
parts. Currently in GME, connections can occur
between atoms (but not models).

• Reference: succinctly, a pointer to a model or atom.
References to references are also allowed.

• Conditional control/set: a way to group parts together
at modeling time. This was designed as a way to have
more specific aspects when designing, but also may
serve the purpose of a set.

2.3 The Paradigm

A particular modeling solution class (or DSME) must obey
the rules of that solution class. These rules are specified in
something called a paradigm. The paradigm essentially

defines the entities and relationships allowed in the given
domain [7]. The paradigm, in this sense, defines the syntax
of the modeling language. It is the paradigm that enables a
generic, configurable model editor to become a DSME.

The paradigm is crafted for the solution class, and therefore
describes the way that models and atoms, etc. are used in
the solution. It does this by assigning a “kind” to the basic
parts. A model may be called a “warehouse” or a “tire
bay,” and an atom may be called a “crane” or a “tire.” The
syntax of the modeling language as described in the
paradigm is described in terms of these “kinds,” not just in
terms of the models and atoms themselves.

In general, the paradigm is represented by the specification
of a metamodel. It formally defines the syntax, semantics,
presentation, and translation specifications of a particular
modeling environment [10].

The paradigm, called the metamodel, is described in terms
of what is called the meta-metamodel. This meta-
metamodel is the description of all of the possible syntax,
semantics, presentation, and translation specifications of
any metamodel (i.e. paradigm) [10].

2.4 Storage

Once a solution is crafted using the DSME, it is useful to
store the solution. When the solution is stored, however,
the paradigm is not stored with it. When the solution is
loaded again, it must still conform to the paradigm that was
used in its definition.

While at first it may not make sense to store the paradigm
separate from the solution, consider the case where many
solutions depend upon one paradigm. Any changes to the
paradigm would then need to be replicated throughout all of
the solutions. However, when the paradigm is stored
separately and referenced by the models , then when the
paradigm is changed it is relatively easy to validate whether
the models still conform to the paradigm.

3 Standardizing Storage

As each DSME has a specific format for representing
models, DSME’s cannot exchange data because of
nonstandard modeling representation. An analogy would be
working with files in different formats, say opening a
Microsoft Word file in the Unix-flavored vi. Although
Word and vi are both tools in the same domain (word
processing) they do not have a common storage format.

However, there exists in Word the option to “save as”
(export the data) basic ASCII characters. This is a format
that vi can read, and that Word can read. ASCII is the
smallest set of concepts in the word processing world, and
any document can be visually expressed with it.

Similarly to the word processing world, any DSME that
accurately represents its domain shares concepts with any
other accurate DSME, even if those concepts are not
represented the same way. What is necessary in order to
communicate between DSME’s is the smallest set of
concepts that they share.

3.1 The Meta-metamodel And Model Parts

When storing models, the models are actually stored in the
language of the meta-metamodel. For example, a
“Warehouse” model is actually known in storage as a
“model of kind Warehouse.” It is possible, therefore, to
produce a listing of all models in a solution in terms of how
they exist in the meta-meta sense, with attributes of how
they exist in the meta sense. In other words, they exist in
terms of the meta-metamodel, and conform in terms of the
metamodel.

3.2 XML

The Extensible Markup Language (XML), developed by the
World Wide Web Consortium (w3c) is a meta-markup
language; a set of rules for creating semantic tags used to
describe data [14]. XML is designed to structure data so
that it can be easily transferred over a network and
consistently processed by the receiver. Because XML is
used to describe information as well as structure it, it can be
thought of as a data description language. XML can be used
to describe data components, records and other data
structures, including complex ones.

An XML element is made up of a start tag, an end tag, and
data in between. The start and end tags describe the data
within the tags, which is considered the value of the
element [14]. An element can optionally contain one or
more attributes. An attribute is a name-value pair separated
by an equal sign (=). XML is hierarchical – elements can
contain other elements. Because XML is a highly structured
language, it is important that all XML be well-formed. That
is, the XML must have both a start tag and an end tag, and
must be authored using the proper syntax [14].

There needs to be a way of making sure that data are
structured in a particular way. Currently the most common
way to define structured XML documents is to use a
Document Type Definition (DTD). The DTD can be
considered as the meta-XML. It defines the rules for the
formation of a particular XML document. The validity of
the XML file can be checked using the DTD. This will
prevent transmission of incomplete or bad data. However,
having a DTD is not enough: there must be something that
performs the actual check. A software engine called a
parser performs the actual check on the data to make sure it
conforms to the DTD. This process is called validation. An
XML document that conforms to a DTD is called a valid
XML document. They can use freely available XML

parsers to parse the XML document, which is made of the
initial data.

In short XML is a universal, standardized language used to
represent data such that it can be both processed
independently and exchanged between programs and
applications and between clients and servers [2].

3.3 XML and Model Representation

To translate models from one DSME to another, it is
necessary to represent all of the domain-specific concepts.
Likewise, to translate between general purpose modeling
environments (ME’s) it is necessary to understand the
concepts of modeling in general. These concepts (briefly
outlined in section 2.2) should be representative of all of the
concepts of modeling, and are the concepts modeled by the
meta-metamodel.

As mentioned in section 3.1 models are stored in terms of
the meta-metamodel, with attributes of how the model
relates to the DSME. In reviewing the concepts of section
2.2, XML is an excellent match for the requirements of a
storage medium –

• XML inherently represents all data hierarchically

• Entities in DSME’s may have attributes associated
with them, which may be bound into elements in
XML.

• XML has built-in support for references to other
entities within the document, complete with
enforcement rules to prevent null references.

• XML enforces the conformance of the document
to a structured standard document type (DTD),
which provides an easy litmus test for the validity
of a model.

• These exists a plethora of parsers for XML
documents, for virtually every operating system
and programming language. Further, XML is a
widely used published standard for data
representation.

In addition to these reasons, XML is useful because it is
viewable from the web. As far as specification goes, XML
here is used only in a small way. Specification of models
occurs in this paper only in terms of the modeling
environment, not in terms of the definition of the paradigm.
UML gives a way of graphically representing models, and it
does this well. However, it does not specify a good textual
syntax for model exchange. It was for this purpose that
CDIF was developed. Although both XML and CDIF
essentially only format data, XML is superior with its
ability to test conformance with the DTD. This is where
XML begins to stand out as a viable implementation.

3.4 Methodology

XML documents can be exchanged and used across
dissimilar platforms and applications. Using XML, data
from any DSME (for example, a paradigm within GME)
can be wrapped inside a data structure, which can then be
used by another DSME (e.g. Visio or any X Modeling
Environment (XME)) that parses the data and uses it. Since
the data structure and the data itself can be combined in a
document object instance, the document “is” the database.
This “database” can be processed by any application that
can handle XML, even though that application may have no
knowledge of the origin of the data [3].

As shown in Figure 1 , we use XML as the communication
medium between DSME’s.

Figure 1 - Using XML as a communication language for
exchanging information between DSME’s.

In order to create the XML document from GME, XML
data exporters were developed which traverse the model
structures in the project, extract information from them, and
translate the paradigm and model data into XML
documents. These documents conform to DTD’s written
that define the models and the paradigm (see Figure 2).

The XML model files and the paradigm file are then sent to
the other DSME along with the corresponding DTD’s for
loading. It is the responsibility of each modeling
environment to develop XML export/import routines that
can organize the necessary data in the format required by
the XML files.

The models are then recreated with the XML loader in the
destination DSME using the data that was exported to
XML. Now, the same data that was represented in the
GME version of the DSME is represented in whatever
modeling editor has loaded the models. This is assuming of
course that the semantics of the appearance of the data are
maintained through the export/import process. Without the
common storage format, this process can take a large

amount of time, because the translation of model types is
handled by human interaction, either through manually
recreating the models, or writing a custom program for this
specific migration. Using the common storage format
approach, one mapping from the concepts in the DTD
provides a solution for any static migration.

Figure 2 - Representation of Export/Import Solution

3.5 Smallest Set Of Modeling Concepts

With a standard form of expression for models, the next
step is to define all of the possible concepts used for
development of models. The overall goal of the standard is
to set up a way to deliver all of the semantically important
information. GME modeling concepts were described in
section 2.2. However, we recognize that other modeling
editors may have generalized other concepts of which the
GME presents only the special case (e.g. GME currently
represents all connections as binary with a source and
destination, but other environments may allow for n-ary
connections). The establishment of such a standard, as
discussed earlier can exist only after experience and
meeting with the maintainers of other similar modeling
editors.

XME

GME Visio

XML

3.6 Current Success

A solution currently exists for the conversion from different
versions of the GME at Vanderbilt. Currently, we are
transitioning from one version of GME to another, and the
addition of several concepts (not to mention the renaming
of concepts from one version to another) is introducing the
problem of model conversion. Here we have two distinct
modeling environments, each of which cannot load the
conventionally stored data of the other. Therefore, models
defined under any paradigm using the old version will be
different than under the new version, because the meta-
metamodels are different, and thus the problem is solved by
casting it as a migration between two DSME’s.

Our current solution exports paradigms and model
structures from the old GME to an XML file that the new
version understands perfectly. The data does not change at
all; what changes is the format in which the data are
presented to the new version of GME.

4 Definition of the Standard

It would be premature of us to say that we have laid the
groundwork for future work in the definition of a standard
interchange format. In order to completely define the
standard, the smallest set of general, graphical modeling
concepts and components must be completely and formally
defined. It is not possible to do this while looking at only
one model editor, but instead a case study should be
performed which would examine as many modeling editors
as possible. However, we believe such a standard is
achievable.

5 Future Work

The goal of this work (as described in section 1) is designed
specifically for the translation of information between two
modeling editors. However, it may be extended to include
the translation of information between two paradigms. In
this sense, although the two modeling editors may in effect
be the same, the paradigms differ. This problem (of
translating models defined under one paradigm to a quite
similar, but significantly different, paradigm) is known as
the model-migration problem. It is important to note that
model-migration in this sense is more broad than mapping
between two DSME’s, because in model migration, the
paradigm is significantly different. This means that new
concepts are introduced, or existing concepts are deleted. It
can also mean that new concepts are introduced to replace
old concepts, but only in certain contexts. However,
mapping between DSME’s is certainly a special case of the
model-migration problem.

When the model-migration problem is encountered, the
most common solution is to rebuild the entire model

database. By exporting the model database under one
paradigm and subsequently importing it into the other, the
same solution is inherently used: to recreate the models.
However, automating the process reduces the time
necessary and, more importantly, reduces errors that may
occur.

The XML export/import solution has been used on several
occasions in projects using the GME and has worked well.
However, as more of the model-migration problem is
examined, it is obvious that a total solution, even for one
particular modeling editor, is quite a long way off.

6 Conclusions

It is certainly a problem that so many modeling
environments cannot easily interchange data. A simple
exchange format (similar to ASCII for word processors) is
not only possible, but necessary for a computing world that
leans more and more toward modeling as a solution to
today’s problems. We have shown that it is possible to
produce XML documents that accurately contain all of the
data of a model solution, and subsequently recreate those
models in another modeling environment that uses the same
paradigm. This was accomplished by delivering everything
the modeling environment needs: a paradigm, and the
models that conform to it.

By choosing XML, we took advantage of built in document
validation. This means that one DTD could be defined to
which all paradigms and models would have to conform.
Then, any modeling environment could export documents
that conformed to this DTD, and any modeling environment
that could import the XML document could create those
models. The advantage is that XML provides a common
syntax and storage, and that there are literally dozens of
free XML parsers available off the shelf [14].

Finally, by showing that models may be converted from one
DSME to another using this technique, we have noted that
an exploration of translation between many different
modeling environments is the next step in developing a
common DTD that could allow for any mature modeling
environment to exchange data with another.

References

[1] The CDIF Homepage. Understanding between model-
ing tools. http://www.eia.org/eig/cdif/index.html

[2] A. Ceponkus, F. Hoodbhoy, Applied XML: A Toolkit
for Programmers, John Wiley Inc. 1999.

[3] M. Fichtelman, “Go Wireless, XML Magazine”,
Summer 2000, Vol.1.

[4] I. Jacobson, G. Booch, J. Rumbaugh, The Unified
Software Development Process, Addison-Wesley,
1999.

[5] G. Karsai, F. DeCaria, “Model-Integrated Online
Problem-Solving Environment for Chemical
Engineering,” IFAC Control Engineering Practice,
Vol. 5, No. 5, pp. 1-9, 1997.

[6] G. Karsai, J. Sztipanovits, S. Padalkar, C. Biegl,
“Model Based Intelligent Process Control for Co-
generator Plants,” Journal of Parallel and Distributed
Systems, pp. 90-103, 1992.

[7] A. Ledeczi, M. Maroti, G. Karsai, G. Nordstrom,
“Metaprogrammable Toolkit for Model-Integrated
Computing,” Proceedings of the Engineering of
Computer Based Systems (ECBS) Conference, pp.
311-317, Nashville, TN, March, 1999.

[8] E. Long, A. Misra, J. Sztipanovits, “Increasing
Productivity at Saturn,” IEEE Computer Magazine,
August, 1998.

[9] A. Misra, G. Karsai, J. Sztipanovits, “Model-
Integrated Development of Complex Applications,”
Proceedings of the Fifth International Symposium on
Assessment of Software Tools, pp. 14-23, Pittsburgh,
PA, June, 1997.

[10] G. Nordstrom, “Formalizing the Specification of
Graphical Modeling Languages,” Proceedings of the
IEEE Aerospace 2000 Conference, CD-ROM
Reference 10.0402, Big Sky, MT, March, 2000.

[11] J. Rumbaugh, I. Jacobson, G. Booch, The Unified
Modeling Language Reference Manual, Addison-
Wesley, 1999.

[12] J. Sztipanovits, “Engineering of Computer-Based
Systems: An Emerging Discipline,” Proceedings of
the IEEE ECBS 1998 Conference, 1998.

[13] J. Sztipanovits, G. Karsai, “Model-Integrated
Computing,” IEEE Computer, pp. 110-112, April,
1997.

[14] The XML Specification. World Wide Web
Consortium: 1998. http://www.w3.org/TR/1998/REC-
xml-19980210

