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Abstract 

Software production has become an industrial task usually 
involving teams of programmers working on complex 
problems to produce large, even huge software systems. 
Globally distributed teams are doing a growing share of all 
software development work. The management of software 
engineering teamwork, especially of a temporally and/or 
spatially distributed team, presents an enormous 
organizational challenge as well as an intricate technical 
problem, as such distributed teamwork requires tool support 
for coordination of cooperative activities, maintenance of 
project control, and sharing of information. Domain-
specific Model Integrated Program Synthesis environments 
are created according to a modeling paradigm – a 
description of the class of models that can be created using 
the system. Just as model integrated computing applications 
are executable instances of domain models, domain models 
can be viewed as instances of metamodels. The 
representation of these models and the modeling paradigm 
is unique to the specific modeling environment. This poses 
a major problem for portability of models from one 
modeling environment to another. The purpose of this paper 
is to explore the possibility of a common standard for the 
storage of models, in what framework the standard should 
exist, and who should define the standard. 

1 Introduction 

Modeling is the process of creating an abstract 
representation of an engineering system. Models serve 
several useful purposes, such as testing a system before 
building it, communicating with customers, visualization, 
and reduction in complexity etc. [4].  Domain-specific 
modeling environments (DSME’s) differ in their modeling 
languages and their model representation. There cannot 
exist a single standard for all DSME’s within the entire 
computer systems design community. The reason for this is 
that DSME’s are designed to solve problems within a 
certain domain and some modeling concepts are very 
important for some applications but trivial or redundant in 
other DSME’s. Large companies with physically dispersed 
divisions create distributed teams to work together on 
software projects. Cross-organizational projects also occur 
with greater frequency, such as a subcontractor working 

closely with a primary systems -integration contractor on a 
large project. In such cases models developed by one team 
using a DSME, should be compatible with the DSME used 
by the other. Here, there arises a need for DSME’s to 
exchange models with one another. 

Although there exist several standard implementations for 
specifying models (e.g. UML [11]) and at least one that 
specifies interchange formats (CDIF [1]), none of these 
implementations support data conformance or validation.  It 
is for this reason that we will explore the possibilities of a 
different medium for specification and storage. 

2 Background 

Large Computer Based Systems (CBS’s) are among the 
most significant technological developments of the past 20 
years [12].  Within the domain of CBS’s the technology 
with which to develop them has evolved.  In the beginning 
of CBS’s, the structure of the system and its components 
was certainly not computerized, because of the enormous 
expense of visualization, but was instead hand-drawn [4]. 
Today, with the development of inexpensive computer 
hardware, large CBS’s are being developed using the 
concept of Model Integrated Computing (MIC) [5][6][8]. 

2.1 Why Models Are Used To Solve Problems  

Computers and computing systems are ubiquitous today.  
Therefore, not only does it make sense to construct software 
that reflects the tangible world that it describes, but also it is 
necessary to construct that software in a way that allows the 
software to evolve as the world evolves.  MIC uses models 
as the basis for system development.  These models reflect 
the components of the system, and the interactions between 
them, but not the particular implementation in which those 
components operate.  MIC is used to create a solution for 
the class of problems [13] (e.g. production flow 
management), and that solution is  then employed to 
describe the particular problem (e.g. production flow 
management for the Saturn plant [8]). 

The MIC approach describes the environment in terms of 
models .  The direct benefit of a model based solution is 
found in the notion of Model-Integrated Program Synthesis 
(MIPS) [9][13].  MIPS allows the generation of programs  
from the model-integrated solution.  This means that to 



update the software solution, one merely updates the model 
of the environment, and recompiles the software.  This 
means fewer errors in software updates, and faster updates 
of the software solutions. 

2.2 GME Modeling Concepts 

DSME’S are made up of basic concepts.  In the Graphical 
Modeling Environment (GME), developed at Vanderbilt 
University, the following modeling concepts apply, on a 
separate level from the final modeling solution.  For a more 
detailed description of the modeling concepts, please see 
[7]. 

• Paradigm: a description of what modeling concepts are 
allowed in a particular solution.  More information on 
the role of the paradigm is described in section 2.3. 

• Category: a container for models.  It is an organ-
izational tool (similar to a file system folder). 

• Atom: the smallest entity of a solution.  It cannot 
contain any parts, but can connect to other atoms and 
have attributes. 

• Model: can contain atoms and other models. In 
addition it can also contain connections, references, 
attributes, and conditionals . It visualizes its contents 
through aspects. 

• Port: an atom that can connect to atoms in other 
models. 

• Aspect: a visualization tool that allows for specific 
parts of a model to be viewable.  The aspects of a 
model are defined when the model is defined. 

• Attribute: can belong to an atom, model, reference, or 
connection.  Usually a text field or menu that defines 
the role of the part in the solution. 

• Containment/hierarchy: the notion of parts “belonging” 
to a model (can be many levels deep). 

• Connections: an association between two (or more) 
parts.  Currently in GME, connections can occur 
between atoms (but not models). 

• Reference: succinctly, a pointer to a model or atom.  
References to references are also allowed. 

• Conditional control/set: a way to group parts together 
at modeling time.  This was designed as a way to have 
more specific aspects when designing, but also may 
serve the purpose of a set. 

2.3 The Paradigm 

A particular modeling solution class (or DSME) must obey 
the rules of that solution class.  These rules are specified in 
something called a paradigm.  The paradigm essentially 

defines the entities and relationships allowed in the given 
domain [7].  The paradigm, in this sense, defines the syntax 
of the modeling language.  It is the paradigm that enables a 
generic, configurable model editor to become a DSME. 

The paradigm is crafted for the solution class, and therefore 
describes the way that models and atoms, etc. are used in 
the solution.  It does this by assigning a “kind” to the basic 
parts.  A model may be called a “warehouse” or a “tire 
bay,” and an atom may be called a “crane” or a “tire.”  The 
syntax of the modeling language as described in the 
paradigm is described in terms of these “kinds,” not just in 
terms of the models and atoms themselves. 

In general, the paradigm is represented by the specification 
of a metamodel.  It formally defines the syntax, semantics, 
presentation, and translation specifications of a particular 
modeling environment [10]. 

The paradigm, called the metamodel, is described in terms 
of what is called the meta-metamodel.  This meta-
metamodel is the description of all of the possible syntax, 
semantics, presentation, and translation specifications of 
any metamodel (i.e. paradigm) [10]. 

2.4 Storage 

Once a solution is crafted using the DSME, it is useful to 
store the solution.  When the solution is stored, however, 
the paradigm is not stored with it.  When the solution is 
loaded again, it must still conform to the paradigm that was 
used in its definition. 

While at first it may not make sense to store the paradigm 
separate from the solution, consider the case where many 
solutions depend upon one paradigm.  Any changes to the 
paradigm would then need to be replicated throughout all of 
the solutions.  However, when the paradigm is stored 
separately and referenced by the models , then when the 
paradigm is changed it is relatively easy to validate whether 
the models still conform to the paradigm. 

3 Standardizing Storage 

As each DSME has a specific format for representing 
models, DSME’s cannot exchange data because of 
nonstandard modeling representation. An analogy would be 
working with files in different formats, say opening a 
Microsoft Word file in the Unix-flavored vi.  Although 
Word and vi are both tools in the same domain (word 
processing) they do not have a common storage format.   

However, there exists in Word the option to “save as” 
(export the data) basic ASCII characters.  This is a format 
that vi can read, and that Word can read.  ASCII is the 
smallest set of concepts in the word processing world, and 
any document can be visually expressed with it. 



Similarly to the word processing world, any DSME that 
accurately represents its domain shares concepts with any 
other accurate DSME, even if those concepts are not 
represented the same way.  What is necessary in order to 
communicate between DSME’s is the smallest set of 
concepts that they share. 

3.1 The Meta-metamodel And Model Parts 

When storing models, the models are actually stored in the 
language of the meta-metamodel.  For example, a  
“Warehouse” model is actually known in storage as a 
“model of kind Warehouse.”  It is possible, therefore, to 
produce a listing of all models in a solution in terms of how 
they exist in the meta-meta sense, with attributes of how 
they exist in the meta sense.  In other words, they exist in 
terms of the meta-metamodel, and conform in terms of the 
metamodel. 

3.2 XML 

The Extensible Markup Language (XML), developed by the 
World Wide Web Consortium (w3c) is a meta-markup 
language; a set of rules for creating semantic tags used to 
describe data [14]. XML is designed to structure data so 
that it can be easily transferred over a network and 
consistently processed by the receiver. Because XML is 
used to describe information as well as structure it, it can be 
thought of as a data description language. XML can be used 
to describe data components, records and other data 
structures, including complex ones. 

An XML element is made up of a start tag, an end tag, and 
data in between. The start and end tags describe the data 
within the tags, which is considered the value of the 
element [14]. An element can optionally contain one or 
more attributes. An attribute is a name-value pair separated 
by an equal sign (=). XML is hierarchical – elements can 
contain other elements. Because XML is a highly structured 
language, it is important that all XML be well-formed. That 
is, the XML must have both a start tag and an end tag, and 
must be authored using the proper syntax [14]. 

There needs to be a way of making sure that data are 
structured in a particular way. Currently the most common 
way to define structured XML documents is to use a 
Document Type Definition  (DTD). The DTD can be 
considered as the meta-XML. It defines the rules for the 
formation of a particular XML document. The validity of 
the XML file can be checked using the DTD. This will 
prevent transmission of incomplete or bad data. However, 
having a DTD is not enough: there must be something that 
performs the actual check. A software engine called a 
parser performs the actual check on the data to make sure it 
conforms to the DTD. This process is called validation. An 
XML document that conforms to a DTD is called a valid 
XML document. They can use freely available XML 

parsers to parse the XML document, which is made of the 
initial data.  

In short XML is a universal, standardized language used to 
represent data such that it can be both processed 
independently and exchanged between programs and 
applications and between clients and servers [2].  

3.3 XML and Model Representation 

To translate models from one DSME to another, it is 
necessary to represent all of the domain-specific concepts.  
Likewise, to translate between general purpose modeling 
environments (ME’s) it is necessary to understand the 
concepts of modeling in general.  These concepts (briefly 
outlined in section 2.2) should be representative of all of the 
concepts of modeling, and are the concepts modeled by the 
meta-metamodel. 

As mentioned in section 3.1 models are stored in terms of 
the meta-metamodel, with attributes of how the model 
relates to the DSME.  In reviewing the concepts of section 
2.2, XML is an excellent match for the requirements of a 
storage medium – 

• XML inherently represents all data hierarchically 

• Entities in DSME’s may have attributes associated 
with them, which may be bound into elements in 
XML. 

• XML has built-in support for references to other 
entities within the document, complete with 
enforcement rules to prevent null references. 

• XML enforces the conformance of the document 
to a structured standard document type (DTD), 
which provides an easy litmus test for the validity 
of a model. 

• These exists a plethora of parsers for XML 
documents, for virtually every operating system 
and programming language.  Further, XML is a 
widely used published standard for data 
representation.  

In addition to these reasons, XML is useful because it is 
viewable from the web.  As far as specification goes, XML 
here is used only in a small way.  Specification of models 
occurs in this paper only in terms of the modeling 
environment, not in terms of the definition of the paradigm.  
UML gives a way of graphically representing models, and it 
does this well.  However, it does not specify a good textual 
syntax for model exchange.  It was for this purpose that 
CDIF was developed. Although both XML and CDIF 
essentially only format data, XML is superior with its 
ability to test conformance with the DTD.  This is where 
XML begins to stand out as a viable implementation. 



3.4 Methodology 

XML documents can be exchanged and used across 
dissimilar platforms and applications. Using XML, data 
from any DSME (for example, a paradigm within GME) 
can be wrapped inside a data structure, which can then be 
used by another DSME (e.g. Visio or any X Modeling 
Environment (XME)) that parses the data and uses it. Since 
the data structure and the data itself can be combined in a 
document object instance, the document “is” the database. 
This “database” can be processed by any application that 
can handle XML, even though that application may have no 
knowledge of the origin of the data [3]. 

As shown in Figure 1 , we use XML as the communication 
medium between DSME’s.   

 

 

 

 

 

 

 

 

 

 

 

Figure 1 - Using XML as a communication language for 
exchanging information between DSME’s. 

In order to create the XML document from GME, XML 
data exporters were developed which traverse the model 
structures in the project, extract information from them, and 
translate the paradigm and model data into XML 
documents.  These documents conform to DTD’s written 
that define the models and the paradigm (see Figure 2 ).  

The XML model files and the paradigm file are then sent to 
the other DSME along with the corresponding DTD’s for 
loading.  It is the responsibility of each modeling 
environment to develop XML export/import routines that 
can organize the necessary data in the format required by 
the XML files. 

The models are then recreated with the XML loader in the 
destination DSME using the data that was exported to 
XML.  Now, the same data that was represented in the 
GME version of the DSME is represented in whatever 
modeling editor has loaded the models.  This is assuming of 
course that the semantics of the appearance of the data are 
maintained through the export/import process.  Without the 
common storage format, this process can take a large 

amount of time, because the translation of model types is 
handled by human interaction, either through manually 
recreating the models, or writing a custom program for this 
specific migration.  Using the common storage format 
approach, one mapping from the concepts in the DTD 
provides a solution for any static migration. 

           

 

Figure 2 - Representation of Export/Import Solution 

3.5 Smallest Set Of Modeling Concepts 

With a standard form of expression for models, the next 
step is to define all of the possible concepts used for 
development of models.  The overall goal of the standard is 
to set up a way to deliver all of the semantically important 
information.  GME modeling concepts were described in 
section 2.2.  However, we recognize that other modeling 
editors may have generalized other concepts of which the 
GME presents only the special case (e.g. GME currently 
represents all connections as binary with a source and 
destination, but other environments may allow for n-ary 
connections).  The establishment of such a standard, as 
discussed earlier can exist only after experience and 
meeting with the maintainers of other similar modeling 
editors. 

XME 

GME Visio 
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3.6 Current Success 

A solution currently exists for the conversion from different 
versions of the GME at Vanderbilt.  Currently, we are 
transitioning from one version of GME to another, and the 
addition of several concepts (not to mention the renaming 
of concepts from one version to another) is introducing the 
problem of model conversion.  Here we have two distinct 
modeling environments, each of which cannot load the 
conventionally stored data of the other.  Therefore, models 
defined under any paradigm using the old version will be 
different than under the new version, because the meta-
metamodels are different, and thus the problem is solved by 
casting it as a migration between two DSME’s. 

Our current solution exports paradigms and model 
structures from the old GME to an XML file that the new 
version understands perfectly.  The data does not change at 
all; what changes is the format in which the data are 
presented to the new version of GME. 

4 Definition of the Standard 

It would be premature of us to say that we have laid the 
groundwork for future work in the definition of a standard 
interchange format.  In order to completely define the 
standard, the smallest set of general, graphical modeling 
concepts and components must be completely and formally 
defined.  It is not possible to do this while looking at only 
one model editor, but instead a case study should be 
performed which would examine as many modeling editors 
as possible.  However, we believe such a standard is 
achievable. 

5 Future Work 

The goal of this work (as described in section 1) is designed 
specifically for the translation of information between two 
modeling editors.  However, it may be extended to include 
the translation of information between two paradigms.  In 
this sense, although the two modeling editors may in effect 
be the same, the paradigms differ.  This problem (of 
translating models defined under one paradigm to a quite 
similar, but significantly different, paradigm) is known as 
the model-migration problem.  It is important to note that 
model-migration in this sense is more broad than mapping 
between two DSME’s, because in model migration, the 
paradigm is significantly different.  This means that new 
concepts are introduced, or existing concepts are deleted.  It 
can also mean that new concepts are introduced to replace 
old concepts, but only in certain contexts.  However, 
mapping between DSME’s is certainly a special case of the 
model-migration problem. 

When the model-migration problem is encountered, the 
most common solution is to rebuild the entire model 

database.  By exporting the model database under one 
paradigm and subsequently importing it into the other, the 
same solution is inherently used: to recreate the models.  
However, automating the process reduces the time 
necessary and, more importantly, reduces errors that may 
occur. 

The XML export/import solution has been used on several 
occasions in projects using the GME and has worked well.  
However, as more of the model-migration problem is 
examined, it is obvious that a total solution, even for one 
particular modeling editor, is quite a long way off. 

6 Conclusions 

It is certainly a problem that so many modeling 
environments cannot easily interchange data.  A simple 
exchange format (similar to ASCII for word processors) is 
not only possible, but necessary for a computing world that 
leans more and more toward modeling as a solution to 
today’s problems.  We have shown that it is possible to 
produce XML documents that accurately contain all of the 
data of a model solution, and subsequently recreate those 
models in another modeling environment that uses the same 
paradigm.  This was accomplished by delivering everything 
the modeling environment needs: a paradigm, and the 
models that conform to it. 

By choosing XML, we took advantage of built in document 
validation.  This means that one DTD could be defined to 
which all paradigms and models  would have to conform.  
Then, any modeling environment could export documents 
that conformed to this DTD, and any modeling environment 
that could import the XML document could create those 
models.  The advantage is that XML provides a common 
syntax and storage, and that there are literally dozens of 
free XML parsers available off the shelf [14]. 

Finally, by showing that models may be converted from one 
DSME to another using this technique, we have noted that 
an exploration of translation between many different 
modeling environments is the next step in developing a 
common DTD that could allow for any mature modeling 
environment to exchange data with another. 
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